Data Envelopment Analysis with Partially Perfect Objects
نویسنده
چکیده
This paper presents a simplified version of Data Envelopment Analysis (DEA) a conventional approach to evaluating the performance and ranking of competitive objects characterized by two groups of factors acting in opposite directions: inputs and outputs. DEA with a Perfect Object (DEA PO) augments the group of actual objects with a virtual Perfect Object the one having greatest outputs and smallest inputs. It allows for obtaining an explicit analytical solution and making a step to an absolute efficiency. This paper develops this approach further and introduces a DEA model with Partially Perfect Objects. DEA PPO consecutively eliminates the smallest relative inputs or greatest relative outputs, and applies DEA PO to the reduced collections of indicators. The partial efficiency scores are combined to get the weighted efficiency score. The computational scheme remains simple, like that of DEA PO, but the advantage of the DEA PPO is taking into account all of the inputs and outputs for each actual object. Firm evaluation is considered as an example. Keywords—Data Envelopment Analysis, Perfect object, Partially perfect object, Partial efficiency, Explicit solution, Simplified algorithm.
منابع مشابه
Effect of Relocation and Rotation on Radial Efficiency Scores for a Partially Negative Data Problem
Negative data handling has gained a remarkable importance in the literature of Data Envelopment Analysis (DEA) to address many real life problems. Various erstwhile applications, in this arena, referred relocation of the origin to a superior (RDM) or to an inferior (Translated Input Oriented BCC) neighboring point. In this paper, the conditions for Rotation Invariance of various Data Envelop...
متن کاملGrouping Objects to Homogeneous Classes Satisfying Requisite Mass
Grouping datasets plays an important role in many scientific researches. Depending on data features and applications, different constrains are imposed on groups, while having groups with similar members is always a main criterion. In this paper, we propose an algorithm for grouping the objects with random labels, nominal features having too many nominal attributes. In addition, the size constra...
متن کاملAn extended of multiple criteria data envelopment analysis models for ratio data
One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evalua...
متن کاملPerformance evaluation of Iran universities with Stochastic Data Envelopment Analysis (SDEA)
Performance evaluation of universities is an important issue between researchers. Classic data envelopment analysis (DEA) models with deterministic data have been used by many authors to measure efficiency of universities in different countries. However, DEA with stochastic data are, rarely used to measure efficiency of universities. In this paper, input oriented model in stochastic data env...
متن کامل